Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Neurol Neuroimmunol Neuroinflamm ; 10(4)2023 07.
Article in English | MEDLINE | ID: covidwho-20235895

ABSTRACT

OBJECTIVES: Vaccine-induced immune thrombotic thrombocytopenia (VITT), a recently described entity characterized by thrombosis at unusual locations such as cerebral venous sinus and splanchnic vein, has been rarely described after adenoviral-encoded COVID-19 vaccines. In this study, we report the immunohistological correlates in 3 fatal cases of cerebral venous thrombosis related to VITT analyzed at an academic medical center. METHODS: Detailed neuropathologic studies were performed in 3 cases of cerebral venous thrombosis related to VITT after adenoviral COVID-19 vaccination. RESULTS: Autopsy revealed extensive cerebral vein thrombosis in all 3 cases. Polarized thrombi were observed with a high density of neutrophils in the core and a low density in the tail. Endothelial cells adjacent to the thrombus were largely destroyed. Markers of neutrophil extracellular trap and complement activation were present at the border and within the cerebral vein thrombi. SARS-CoV-2 spike protein was detected within the thrombus and in the adjacent vessel wall. DISCUSSION: Data indicate that neutrophils and complement activation associated with antispike immunity triggered by the vaccine is probably involved in the disease process.


Subject(s)
COVID-19 , Thrombocytopenia , Thrombosis , Vaccines , Venous Thrombosis , Humans , COVID-19 Vaccines/adverse effects , Endothelial Cells , SARS-CoV-2 , Venous Thrombosis/etiology
2.
Ann Neurol ; 92(4): 562-573, 2022 10.
Article in English | MEDLINE | ID: covidwho-1885378

ABSTRACT

OBJECTIVE: Cerebral venous thrombosis (CVT) caused by vaccine-induced immune thrombotic thrombocytopenia (VITT) is a rare adverse effect of adenovirus-based severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) vaccines. In March 2021, after autoimmune pathogenesis of VITT was discovered, treatment recommendations were developed. These comprised immunomodulation, non-heparin anticoagulants, and avoidance of platelet transfusion. The aim of this study was to evaluate adherence to these recommendations and its association with mortality. METHODS: We used data from an international prospective registry of patients with CVT after the adenovirus-based SARS-CoV-2 vaccination. We analyzed possible, probable, or definite VITT-CVT cases included until January 18, 2022. Immunomodulation entailed administration of intravenous immunoglobulins and/or plasmapheresis. RESULTS: Ninety-nine patients with VITT-CVT from 71 hospitals in 17 countries were analyzed. Five of 38 (13%), 11 of 24 (46%), and 28 of 37 (76%) of the patients diagnosed in March, April, and from May onward, respectively, were treated in-line with VITT recommendations (p < 0.001). Overall, treatment according to recommendations had no statistically significant influence on mortality (14/44 [32%] vs 29/55 [52%], adjusted odds ratio [OR] = 0.43, 95% confidence interval [CI] = 0.16-1.19). However, patients who received immunomodulation had lower mortality (19/65 [29%] vs 24/34 [70%], adjusted OR = 0.19, 95% CI = 0.06-0.58). Treatment with non-heparin anticoagulants instead of heparins was not associated with lower mortality (17/51 [33%] vs 13/35 [37%], adjusted OR = 0.70, 95% CI = 0.24-2.04). Mortality was also not significantly influenced by platelet transfusion (17/27 [63%] vs 26/72 [36%], adjusted OR = 2.19, 95% CI = 0.74-6.54). CONCLUSIONS: In patients with VITT-CVT, adherence to VITT treatment recommendations improved over time. Immunomodulation seems crucial for reducing mortality of VITT-CVT. ANN NEUROL 2022;92:562-573.


Subject(s)
COVID-19 , Intracranial Thrombosis , Venous Thrombosis , Adenoviridae , Anticoagulants/therapeutic use , COVID-19 Vaccines/adverse effects , Humans , Immunoglobulins, Intravenous/therapeutic use , SARS-CoV-2 , Vaccination/adverse effects , Venous Thrombosis/complications
5.
Radiology ; 297(2): E242-E251, 2020 11.
Article in English | MEDLINE | ID: covidwho-599380

ABSTRACT

Background Brain MRI parenchymal signal abnormalities have been associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Purpose To describe the neuroimaging findings (excluding ischemic infarcts) in patients with severe coronavirus disease 2019 (COVID-19) infection. Materials and Methods This was a retrospective study of patients evaluated from March 23, 2020, to April 27, 2020, at 16 hospitals. Inclusion criteria were (a) positive nasopharyngeal or lower respiratory tract reverse transcriptase polymerase chain reaction assays, (b) severe COVID-19 infection defined as a requirement for hospitalization and oxygen therapy, (c) neurologic manifestations, and (d) abnormal brain MRI findings. Exclusion criteria were patients with missing or noncontributory data regarding brain MRI or brain MRI showing ischemic infarcts, cerebral venous thrombosis, or chronic lesions unrelated to the current event. Categorical data were compared using the Fisher exact test. Quantitative data were compared using the Student t test or Wilcoxon test. P < .05 represented a significant difference. Results Thirty men (81%) and seven women (19%) met the inclusion criteria, with a mean age of 61 years ± 12 (standard deviation) (age range, 8-78 years). The most common neurologic manifestations were alteration of consciousness (27 of 37, 73%), abnormal wakefulness when sedation was stopped (15 of 37, 41%), confusion (12 of 37, 32%), and agitation (seven of 37, 19%). The most frequent MRI findings were signal abnormalities located in the medial temporal lobe in 16 of 37 patients (43%; 95% confidence interval [CI]: 27%, 59%), nonconfluent multifocal white matter hyperintense lesions seen with fluid-attenuated inversion recovery and diffusion-weighted sequences with variable enhancement, with associated hemorrhagic lesions in 11 of 37 patients (30%; 95% CI: 15%, 45%), and extensive and isolated white matter microhemorrhages in nine of 37 patients (24%; 95% CI: 10%, 38%). A majority of patients (20 of 37, 54%) had intracerebral hemorrhagic lesions with a more severe clinical presentation and a higher admission rate in intensive care units (20 of 20 patients [100%] vs 12 of 17 patients without hemorrhage [71%], P = .01) and development of the acute respiratory distress syndrome (20 of 20 patients [100%] vs 11 of 17 patients [65%], P = .005). Only one patient had SARS-CoV-2 RNA in the cerebrospinal fluid. Conclusion Patients with severe coronavirus disease 2019 and without ischemic infarcts had a wide range of neurologic manifestations that were associated with abnormal brain MRI scans. Eight distinctive neuroradiologic patterns were described. © RSNA, 2020.


Subject(s)
Betacoronavirus , Brain/diagnostic imaging , Brain/pathology , Coronavirus Infections/diagnostic imaging , Coronavirus Infections/pathology , Magnetic Resonance Imaging/methods , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/pathology , Adolescent , Adult , Aged , COVID-19 , Child , Cohort Studies , Female , Humans , Male , Middle Aged , Pandemics , Retrospective Studies , SARS-CoV-2 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL